Degree of rational maps versus syzygies

نویسندگان

چکیده

One proves a far-reaching upper bound for the degree of generically finite rational map between projective varieties over base field arbitrary characteristic. The is expressed as product certain degrees that appear naturally by considering Rees algebra (blowup) ideal defining map. Several special cases are obtained consequences, some which cover and extend previous results in literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degree Bounds for Syzygies of Invariants

Suppose that G is a linearly reductive group. Good degree bounds for generators of invariant rings were given in [2]. Here we study the minimal free resolution of the invariant ring. Recently it was shown that if G is a finite linearly reductive group, then the ring of invariants is generated in degree ≤ |G| (see [5, 6, 3]). This extends the classical result of Noether who proved the bound in c...

متن کامل

Homogeneous varieties - zero cycles of degree one versus rational points

Examples of projective homogeneous varieties over the field of Laurent series over p-adic fields which admit zero cycles of degree one and which do not have rational points are constructed. Let k be a field and X a quasi-projective variety over k. Let Z0(X) denote the group of zero cycles on X and deg : Z0(X) → Z the degree homomorphism which associates to a closed point x of X, the degree [k(x...

متن کامل

Implicitization of rational hypersurfaces via linear syzygies: a practical overview

We unveil in concrete terms the general machinery of the syzygybased algorithms for the implicitization of rational surfaces in terms of the monomials in the polynomials defining the parametrization, following and expanding our joint article with M. Dohm. These algebraic techniques, based on the theory of approximation complexes due to J. Herzog, A, Simis and W. Vasconcelos, were introduced for...

متن کامل

A Partial Description of the Parameter Space of Rational Maps of Degree Two: Part 2

This continues the investigation of a combinatorial model for the variation of dynamics in the family of rational maps of degree two, by concentrating on those varieties in which one critical point is periodic. We prove some general results about nonrational critically finite degree two branched coverings, and finally identify the boundary of the rational maps in the combinatorial model, thus c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2021

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2021.01.001